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BACKGROUND

Parametric cost risk is a statistical phenomena.  One first assumes that the cost is
defined by

C = h(p1, ..., pm)

where h is a function of the parameters p1, ..., pm.

Second, one assumes that each of the parameters is a random variable.  This applies to
a single cost estimating relationship (CER) which might be in the typical Cobb-Douglas form

C = p1
q1 ... pm

qm

where the qi are the elasticities, or to the sum of n work breakdown structure (WBS) elements
pi in the form

C = p1 + ... + pn.

In a complete cost risk simulation the cost of each WBS element would be a function hi
of parameters p1, ..., pm with the form

C = h1(p) + ... + hn(p)
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where p is the vector

p = 
 



 

p1

.
pm

with components pi.

Third, one must make an assumption about the dependence of the variables within the
variable set.  One may assume that the variables are statistically independent, that the variables
are totally dependent, or that correlation exists between selected pairs of variables.  If the
assumption of independence is made, then the distribution function F(C ≤ constant) of the
WBS elements becomes arbitrarily narrow as more WBS elements are added.  If this were the
case then we could converge on a point estimate by estimating at the lowest levels of an
arbitrarily deep WBS.  This is not the case in real life.  If the assumption of total dependence is
made then the widest distribution function occurs.  It has one and only one width no matter
how many samples are taken.   This also is not the case in real life.  In real life, correlation
exists between selected pairs of variables.  The focus of this paper is to examine key aspects of
simulating this case.

CORRELATION AND GEOMETRY

Correlation is largely perceived to be a statistical phenomena.  It is.  But it is also a
geometric phenomena (Herr, 1980).  To see this, we must first view the data in vector form
(Halmos, 1974).  Let xi be the vector

xi = 

 




 


pi1

.

.

.
pin

where n is the number of data points selected for the parameter pi.  This may be viewed as a
point in n-dimensional space (Kendall, 1961).  Each dimension represents the particular
instance of selecting a value pij for parameter pi. The transpose of the vector xi is denoted by

xi' = [ ]pi1 ... pi n .
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There are m vectors xi of dimension n.  Take the mean of the n data points in each
vector.  Margolis (1979) shows the mean to be the orthogonal projection of the data onto the n-
vector (1, ... ,1).  This is displayed in 2 dimensions in Figure 1, that is, with 2 data points for
the parameter p.

p1

p2 [p1,p2]'

[1,1]'

2 µ = (p1+p2) [1,1]'

Figure 1: The Mean as an Orthogonal Projection
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Figure 2: Data Vectors Adjusted for the Mean.
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Denote the mean vector by µ = [µ1, ... ,µ3]' where µi is the mean of the ith parameter
pi.  Let the mean vector be the tensor operating point (O'Neill, 1966) and translate the space by
the coordinate function yij = xij - µj so that the mean becomes the origin.  We now have
vectors y1, y2, and y3 which originate from the new origin at µ.  This is shown in two
dimensions in Figure 2.

Note that the squared length |yi|
2 = yi1

2 + ... + yin
2 of the vector yi is the sum of

squares of parameter i adjusted for the mean.  Note further that the dot product of yi and yj is

yi • yj = yi' yj = |yi| |yj| cos θij where θij is the angle between the vectors yi and yj.  Consider

the unit vectors ui = 
yi
|yi|

 .  Then ui • uj = cos θij.

Let Y = [y1, ... , y3].  Then the covariance matrix (Kendall, 1961) is

Φ = Y' Y = 
 



 

y1

. . .
ym

 [ ]y1 ... ym  = 
 



 

y1•y1  ... y1•ym  

. . .   . . .   . . .  
ym •y1 ... ym•ym

Φ = 
 




 


|y1||y1|cosθ11  ... |y1||ym|cosθ1m 

. . .   . . .   . . .  
|ym||y1|cosθm1 ... |ym||ym|cosθmm

Φ = 
 



 

|y1|  0   0  

0   . . .   0  
0   0   |ym|

 
 




 


cosθ11  ... cosθ1m 

. . .   . . .   . . .  
cosθm1 ... cosθmm

 
 



 

|y1|  0   0  

0   . . .   0  
0   0   |ym|

Φ = M Ψ M

where

M = 
 



 

|y1|  0   0  

0   . . .   0  
0   0   |ym|

is the magnitude matrix and
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Ψ = 
 




 


cosθ11  ... cosθ1m 

. . .   . . .   . . .  
cosθm1 ... cosθmm

is the correlation matrix.

Since M is invertible, the correlation matrix can be found from the covariance matrix by

Ψ = M-1ΦM-1

where

M-1 = 

 




 


1

|y1|  0   0  

0   . . .   0  

0   0  
1

|ym|

It is important to note that the covariance matrix Φ, in vector form, has the same
definition as Einstein's fundamental metric tensor (Cartan, 1937) which completely determines
the geometry of the data space (Einstein, 1916).  Levi-Civita (1926) notes the relationship of
the angles θij of Ψ between the basis vectors and the fundamental metric tensor Φ.  Although
these concepts have existed for many years they have rarely been used, or even noted, by
statisticians.

What does all this mean in terms of cost risk?  It means that the geometric paradigm
provides a way of both visualizing and implementing cost risk.

The three vectors u1, ... um are orthogonal if and only if cos θij = 0 for i ≠ j.  Thus
correlated parameters have non orthogonal unit data vectors.  A basis is a set of vectors which
span a space or subspace such that none of them may be written as a linear combination of a
subset of the other basis vectors (Halmos, 1974).  This means that U = [u1, ... , um] is a
normal but non orthogonal basis for the data space.  Y = [y1, ... , ym] is a non normal and non
orthogonal basis for the data space.  Such bases require a second tensor concept, the first being
the establishment of the mean as the tensor operating point.
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If w is any vector in our data space then (w • ui) ui is the projection of w on the unit basis
vector ui (Saville and Wood, 1991).  In the terminology of tensors (w • ui) ui is the covariant
projection of w on ui and w • ui = |w| coswi is the covariant component (Pellionisz and Llinás,
1980).  Unfortunately, as shown in Figure 3, the covariant components uiα of non orthogonal
vectors can not be used to obtain the vector sum.

w

p1

p2

u1

u2

covariant component

contravariant component

Figure 3: Covariant and Contravariant Vectors

The vector sum must use the contravariant components uiβ.  These are obtained by the
transformation

uiβ = ∑α  Ψβα  uiα  

where the Ψβα are the components of Ψ-1.  This is called "raising the index."  Observe from
Figure 3 that the covariant and contravariant components are identical when the basis vectors
are orthogonal.  This is an excellent reason for transforming the data to the basis defined by the
principal components (Dean, 1988) which is an orthonormal basis.  In that basis, the covariant
and contravariant components are identical.
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GENERATING CORRELATED RANDOM NUMBERS

In order to estimate cost risk, following Book and Young (1992), a set of random
numbers pi may be chosen from arbitrary distributions and then used to generate the estimated
distribution of cost with desired correlation which defines the cost risk.  It is desired that the
variates pi have the correlation Ψ and covariance Φ.

Choose the variates x independently from the desired distributions,  and adjust them for
the mean to obtain variates y from

yij = xij - µj.

Form the covariance matrix Y' Y with magnitude M as the desired magnitude to obtain Φ.
Note that

Y' Y = M Ψy M = M M

since the variates were chosen independently.  Following Fukunaga (1990) we transform the
variates by

Z = Y M-1

to obtain

Z' Z = M-1' Y' Y M-1 = M-1 M M M-1 = I.

Thus the variates z are uncorrelated and have unit magnitude.  Choosing new variates v defined
by

V = Z Ψ1/2
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we have

V' V = (Z Ψ1/2)' Z Ψ1/2 = Ψ1/2 Z' Z Ψ1/2 = Ψ.

Finally, choosing new variates u defined by

U = V M = Z Ψ1/2 M = Y M-1 Ψ1/2 M

we have

U' U = (Y M-1 Ψ1/2 M )' Y M-1 Ψ1/2 M

       = M Ψ1/2 M-1 Y' Y M-1 Ψ1/2 M

       = M Ψ1/2 M-1 M M M-1 Ψ1/2 M

       = M Ψ M = Φ.

Thus the variates u have the desired correlation and covariance.  Adjusting for the mean by

wij = uij + µj

we obtain the desired variates wij.

FINDING THE SQUARE ROOT OF THE CORRELATION MATRIX

The square root of a correlation matrix is not unique.  The Choleski factorization can be
used (Book and Young, 1992).  Another technique used by the author is as follows:

Following Dean (1988), find the principle components (Overall and Klett, 1983; Press,
Teukolsky, Vetterling, and Flannery, 1992) of the correlation matrix.  Thus we have the
eigenvector matrix Ω and the diagonal eigenvalue matrix Λ such that

Ψ Ω = Ω Λ and Ω Ω' = Ω' Ω = I
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where

Ω = [ ]ω1 ... ωm

and

Λ = 
 




 


λ 1   . . .   0  

. . .   . . .   . . .  
0   . . .  λm

 .

 Thus

 Ψ = Ω Λ Ω' = Ω Λ1/2 Λ1/2 Ω' = Ω Λ1/2 Λ1/2' Ω' =  (Ω Λ1/2) (Ω Λ1/2)'

Letting

 Ψ1/2 = (Ω Λ1/2)' = Λ1/2 Ω'

we have

Ψ = Ψ1/2' Ψ1/2 = Ψ1/2 Ψ1/2

as desired.

Thus the desired variates wij are

wij = uij + µj

where

U = Y M-1 Λ1/2 Ω' M.
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OBSERVATIONS

The geometric viewpoint identifies the choice of a correlation matrix for the simulation
of cost risk with the pairwise choice of data vectors corresponding to the parameters used to
obtain cost risk.  The correlation coefficient is the cosine of the angle between the data vectors
after translation to an origin at the mean and normalization for magnitude.  Thus correlation is
equivalent to expressing the data in terms of a non orthogonal basis.  To understand the many
resulting phenomena requires the use of the tensor concept of raising the index to transform the
measured and observed covariant components into contravariant components before vector
addition can be applied.

The geometric viewpoint also demonstrates that correlation and covariance are
geometric properties, as opposed to purely statistical properties, of the variates.  Thus, variates
from different distributions may be correlated, as desired, after selection from independent
distributions.

By determining the principal components of the correlation matrix, variates with the
desired mean, magnitude, and correlation can be generated through linear transforms which
include the eigenvalues and the eigenvectors of the correlation matrix.

The conversion of the data to a non orthogonal basis uses a compound linear
transformation which distorts or stretches the data space.  Hence, the correlated data does not
have the same properties as the uncorrelated data used to generate it.  This phenomena is
responsible for seemingly strange observations such as the fact that the marginal distributions
of the correlated data can be quite different from the distributions used to generate the data.
The joint effect of statistical distributions and correlation remains a fertile area for further
research.

In terms of application to cost estimating, the geometric approach demonstrates that the
estimator must have data and must understand that data in order to properly choose the
correlation matrix appropriate for a given estimate.

There is a general feeling by employers and managers that the field of cost requires little
technical or mathematical background.  Contrary to that opinion, this paper demonstrates that a
background in mathematics equivalent to that needed for typical engineering and scientific
disciplines at the masters or doctorate level is appropriate within the field of cost risk.
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